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Hsp70 chaperones bind to various protein substrates for fold-
ing, trafficking, and degradation. Considerable structural infor-
mation is available about how prokaryotic Hsp70 (DnaK) binds
substrates, but less is known about mammalian Hsp70s, of
which there are 13 isoforms encoded in the human genome.
Here, we report the interaction between the human Hsp70 iso-
form heat shock cognate 71-kDa protein (Hsc70 or HSPA8) and
peptides derived from the microtubule-associated protein Tau,
which is linked to Alzheimer’s disease. For structural studies, we
used an Hsc70 construct (called BETA) comprising the sub-
strate-binding domain but lacking the lid. Importantly, we
found that truncating the lid does not significantly impair
Hsc70’s chaperone activity or allostery in vitro. Using NMR, we
show that BETA is partially dynamically disordered in the
absence of substrate and that binding of the Tau sequence
GKVQIINKKG (with a KD � 500 nM) causes dramatic rigidifica-
tion of BETA. NOE distance measurements revealed that Tau
binds to the canonical substrate-binding cleft, similar to the
binding observed with DnaK. To further develop BETA as a tool
for studying Hsc70 interactions, we also measured BETA bind-
ing in NMR and fluorescent competition assays to peptides
derived from huntingtin, insulin, a second Tau-recognition
sequence, and a KFERQ-like sequence linked to chaperone-me-
diated autophagy. We found that the insulin C-peptide binds
BETA with high affinity (KD < 100 nM), whereas the others do
not (KD > 100 �M). Together, our findings reveal several simi-
larities and differences in how prokaryotic and mammalian
Hsp70 isoforms interact with different substrate peptides.

Hsp70 chaperones assist in intracellular protein trafficking,
protein refolding (1, 2), and protein degradation via the protea-

some (3) and via autophagy (4). The human genome codes for
13 Hsp70 isoforms, one of which is the cytosolic and constitu-
tively expressed Hsc70 (HSPA8) (5). In the last decade, Hsc70
has been linked to multiple protein misfolding disorders such as
Alzheimer’s, Parkinson’s, and Huntington’s diseases and type II
diabetes (6). Like all Hsp70s, human Hsc70, modeled in Fig. 1,
consists of a nucleotide-binding domain (NBD, residues
1–386)4 and a substrate-binding domain (SBD) that is further
subdivided into a �-domain harboring the substrate-binding
cleft (BETA, residues 395–508) and an �-helical lid (LID, resi-
dues 509 – 604). The SBD is followed by a dynamically unstruc-
tured region (residues 605– 646) harboring the CHIP-binding
site at its very C terminus (7).

Much of the insight into the function of the Hsp70 chaper-
ones has been obtained for DnaK, a homolog from Escherichia
coli. DnaK, in the presence of ATP and the co-chaperones DnaJ
and GrpE, hydrolyzes nucleotide and refolds denatured lucifer-
ase in vitro. During this cycle, DnaK in the ADP state binds
tightly (KD � 0.1 �M) to exposed hydrophobic sequences in
misfolded substrate proteins and helps these proteins unfold.
Upon exchange of ADP for ATP, the affinity for the bound
protein is reduced (KD � �1 �M), and the substrate is released
to refold (8). The interactions of DnaK with peptides (9), nucle-
otides (8), and co-chaperones (10) has been extensively studied.
However, far fewer quantitative details are known for the
human proteins. What is clear is that the fundamental features
of the biochemical cycle are intact. Hsc70, in the presence of
ATP and co-chaperones, such as DnaJA2 and BAG2, also
hydrolyzes nucleotide and refolds luciferase in vitro (11). One
difference in humans is the large expansion of the number of
co-chaperones, which seems to have diversified Hsp70’s activ-
ities. Another difference is that the substrate proteins of human
Hsp70s have not been categorized.

Much of our structural knowledge of this system is derived
from crystallography and NMR studies of E. coli DnaK. Struc-
tures are available for the ADP- and ATP-bound states of the
NBD (12, 13), as well as the apo- (14) and substrate-bound
forms of the SBD (15, 16). There are also structures of near
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native NBD–SBD constructs in both the ADP-peptide (17) and
ATP-apo (18, 19) states. In contrast, there is a paucity of human
Hsp70 structures. Although a crystal structure for the human
Hsc70 NBD (12) and a solution structure for the human sub-
strate-bound SBD (20) were deposited a long time ago, it is not
yet clear how nucleotide state or peptide substrate binding
impact these structures. In addition, there are no equivalent
structures of near native NBD–SBD Hsc70 constructs.

Nevertheless, most workers in the field assume that the
structural results for DnaK can be safely extrapolated to the
human chaperones. But is that true? Here we address one of
these omissions by studying the binding of peptides to Hsc70
SBD.

As a model substrate system, we focused on the abundant
neuronal microtubule-associated protein Tau because it one of
the few proteins that is known to be a natural substrate for
Hsc70 in cells (21). Hsc70’s binding sites on Tau have been well
characterized (22). Tau is an intrinsically unfolded protein (23)
that plays a role in microtubule assembly. However, when Tau
becomes hyperphosphorylated, it fails to bind microtubules
and deposits in neurofibrillary tangles that correlate with Alz-
heimer’s disease (24, 25). Hsc70 (HSPA8) and Hsp70 (HSPA1A)
levels are elevated in cells containing neurofibrillary tangles,
suggesting a relationship with Tau proteostasis (26). Signifi-
cantly, Dickey, Gestwicki, and co-workers showed that Tau
clearance is enhanced by compounds that lock Hsc70 in the
ADP state (27, 28).

Hsc70 is involved in CHIP-mediated transport of substrates,
including Tau, to the proteasome (29), as well as in degradation
in the lysosome via chaperone-mediated autophagy (CMA)
(30). Interestingly, the surfaces of Tau that are involved in these
two degradation pathways are likely distinct: proteasomal
degradation involves Hsc70 binding to specific sequences in
Tau: 590KVQIINKK and 613VQIVYK (21), whereas interac-
tions of Hsc70 with Tau during CMA require sequences with
the polar KFERQ signature (31–33). Thus, one of the major
questions in the Hsc70 field is how these various interactions
take place and which ones occur in the classic SBD cleft. It is
with Dr. Chad Dickey’s research into the biomedical Tau–
Hsc70 linkage in mind that we dedicate this manuscript to
his memorial.

In this work, we use a truncated construct, BETA, to study
the interactions between Hsc70 and Tau using fluorescence
competition assays and NMR. The NMR data show that BETA
contains regions of dynamic disorder in the apo-state. The
addition of KVQIINKK, but not VQIVYK, results in significant
rigidification. Nuclear Overhauser effect distance measure-
ments show that KVQIINKK binds into the canonical sub-
strate-binding cleft. These results suggested to us that BETA
might be a useful construct for broadly studying Hsc70 –
peptide interactions. Accordingly, we studied a number of addi-
tional peptides, including the prototypical sequence, NRLLLTG
(15), the CMA KFERQ peptide, a peptide derived of huntingtin
(34), and the C-peptide of insulin (35). The results further elab-
orate the diverse interactions of Hsc70 and suggest that BETA
is a useful tool for rapidly studying other substrates of human
Hsp70s.

Results

The main focus of the current study is the interaction of the
human Tau-derived peptide 590KVQIINKK, which we will refer
to as TAU1, with human Hsc70. Fig. 1 shows a modeled struc-
ture of full-length Hsc70, showing its NBD, SBD-BETA, SBD-
LID, and Tail for reference. Because the full-length 70-kDa pro-
tein is too large for detailed NMR studies, we set out to design a
truncated form (�30 kDa) that would bind to TAU1 and be
representative of the WT protein. This was not an easy
endeavor. We found that many Hsc70 SBD constructs tend to

Figure 1. Overview of Hsc70. Shown is a model based on Hsc70 (HSPA8)
NBD (PDB entry 3HSC; green) with ADP (magenta) and Hsp70 (HSPA1A) SBD
(PDB entry 4PO2; BETA domain in blue, LID in cyan) with NRLLLTG (magenta)
bound. The TAIL (red) has arbitrary conformation. The overall juxtaposition
was taken after DnaK in ADP-NRLLLTG state (PDB entry 2KHO).
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bind to themselves, either intramolecularly (20) or intermo-
lecularly. Even Hsc70 385– 604, composed of just the �-domain
and the helical LID, bound the TAU1 peptide with too low of an
affinity (KD � �200 �M as estimated by NMR, not shown). We
reasoned that the LID domain might be interfering with entry
into the cleft. Therefore, we decided to further truncate the
domain down to the BETA basket, with exact sequence
MSNA395D–G508-G3H6 (Fig. 1, blue). The N-terminal MSNA
is a cloning artifact that does not seem to impact structure or
function. We describe below that this domain, which we refer
to as BETA, binds TAU1 with high affinity. Furthermore, it
permits detailed studies into how human Hsc70 binds to other
“substrate” peptides.

Fig. 2 shows 15N-1H TROSY HSQC spectra of BETA in the
absence and presence of TAU1. Significantly, the addition of
TAU1 causes the emergence of many new signals (red). Because
we do not observe the loss of any resonances that were present
in the apo spectrum upon adding TAU1, we conclude that the
appearing resonances are broadened beyond detection in the
apo state. In other words, resonances that were not visible in
the spectrum of apo BETA were broadened beyond detection
because of dynamical disorder on the microsecond time scale.
To understand whether the interaction of TAU1 with Hsc70
was retained in full-length Tau, we purified a splice isoform that
is expressed in adult brains, termed 4R0N Tau. 4R0N Tau also
causes appearances of new resonances in BETA, suggesting that
similar contacts might be made with the full-length protein
(Fig. 2, insets).

To further characterize the interaction, we collected 13C-1H
methyl HSQC NMR data at low concentrations. Fig. 3A shows
the appearance of new methyl resonances upon binding of
(unlabeled) TAU1, with the most prominent being those of
Ile440 13C�1-1H3 (9, 0.25 ppm) and 13C�2-1H3 (17.5, 0.45 ppm).
The addition of more TAU1 only changes intensities of the
appearing cross-peaks and not chemical shifts, indicating slow
off-rates and high affinity (KD �� 10 �M; see also Table 1). The
addition of 4R0N Tau causes appearances of new resonances
just as the TAU1 peptide (Fig. 3C), suggesting a basically similar
interaction. Another Tau-derived sequence that has been pro-
posed to bind Hsc70, 613VQIVFK, caused hardly any change
and thus binds with weak affinity if at all (Fig. 3D and Table 1).

We chose to work with the Hsc70 BETA construct because a
DnaK NBD–SBD construct, also without LID, has been shown
to be functional in multiple chaperone assays, establishing the
isolated DnaK BETA construct as a valid domain for structural
studies (14) (36). However, we needed to re-explore this issue
for the human protein. To do this, we created Hsc70 1–508,
which includes the NBD and the BETA domains but lacks the
LID and Tail. We used a fluorescence polarization assay to mea-
sure binding of FAM–HLA to Hsc70 1–508 and full-length,
human Hsc70. We found that FAM–HLA bound tightly to
Hsc70 1–508 (KD � �0.1 �M in the presence of ADP), whereas
binding is nucleotide-dependent (at least 10-fold weaker bind-
ing with ATP) (Fig. 4A), establishing that nucleotide–substrate
allostery is intact in this construct. Interestingly, we also found
that FAM–HLA binding to Hsc70 1–508 is �10 –30 times
stronger than to full-length Hsc70. Indeed, it was difficult to
reach concentrations high enough to measure binding of

FAM–HLA to wt Hsc70 because of solubility limits. Next, we
compared the ability of Hsc70 1–508 and full-length Hsc70 to
be stimulated by J protein in steady-state ATPase assays. We
found that Hsc70 1–508 was readily stimulated by a represen-
tative J protein, DnaJA2, and that this stimulation was almost
identical to full-length protein (Fig. 4B). One of the most com-
plex activities of Hsc70 is its ability to refold denatured firefly
luciferase. This activity requires multiple rounds of substrate
binding and release coordinated with ATP hydrolysis and J pro-
tein interactions. To investigate whether Hsc70 1–508 was
capable of this function, we tested it in a luciferase refolding
assay in combination with ATP and DnaJA2. Although Hsc70
1–508 was not as efficient as wt Hsc70, it had significant refold-
ing activity (Fig. 4C). The reduction in maximum refolding effi-
ciency as compared with wt Hsc70 is not too surprising,
because it is known that the efficiency depends on the kinetics
of substrate binding and release, which likely are perturbed
without the LID (37). From this experiment, we were also inter-
ested in testing whether Hsc70 1–508 might coordinate with
DnaJA2. We noticed that the refolding activity of Hsc70 1–508
shows a maximum at approximately the same concentration of
DnaJA2 (�0.5 �M), as seen with wt Hsc70, suggesting that it can
indeed coordinate with the J protein. At higher concentrations
of DnaJA2 (0.5 �M), the apparent refolding activity decreases
for both proteins, likely because of accumulation of DnaJA2 on
unfolded luciferase (11). Finally, it is known that substrate bind-
ing to prokaryotic DnaK enhances ATP hydrolysis but that this
allostery is lost in human Hsc70 (11). Consistent with this idea,
we found that the ATPase activity of wt Hsc70 and Hsc70
1–508 are not/hardly affected by addition of NR peptide,
whereas DnaK is strongly stimulated (Fig. 4D). Together, we
conclude that Hsc70 1–508 mimics native Hsc70 in these assays
and is largely functional as a chaperone. This result gave us
confidence that Hsc70 –BETA would be suitable for studying
the structural consequences of Hsc70 –substrate interactions.

As a further test of this idea, we determined the affinities of
4R0N Tau, TAU1, and other peptides to different Hsc70 con-
structs using a fluorescence competition assay with a FAM–
HLA peptide (Fig. 5). To cross-validate this assay by NMR, we
show in Fig. S1 of the supporting data that FAM–HLA causes
appearances of many resonances (Fig. S1A) at similar frequen-
cies as TAU1 does (Fig. S1B), so it is reasonable to assume that
they compete for the same site. The competition assays in Fig. 5
show that the series of peptides compete for the NBD–BETA
and BETA constructs with similar potency, whereas the com-
petition with wt Hsc70 consistently required approximately
three times higher concentrations. However, the affinity of wt
Hsc70 for tracer was also weaker, so to better compare the
values we converted the EC50 values to inhibitory constants (see
“Experimental procedures”). By this analysis, we found that
the binding affinities of the peptides for all three constructs are
indistinguishable (Table 1). Interestingly, it appears that 4R0N
Tau binds somewhat tighter than TAU1, perhaps because of
the contribution from secondary interactions. As a control,
we also ensured that none of the peptides interacts with the
tracer (Fig. S2). Together, these results are consistent with
the idea that BETA is a suitable model for studying substrate
interactions.
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Figure 2. 15N-1H TROSY HSQC spectra of Hsc70 BETA. The boxes show enlargements. Blue, 35 �M BETA. Red, 35 �M BETA � 200 �M TAU1 (GKVQIINKKG). Black,
35 �M BETA � 57 �M WT 4R0N TAU.
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The other major paralog of the Hsp70 family in the cytosol is
Hsp72 (HSPA1A), also called inducible Hsp70. It is known that
Hsc70 binds differently than Hsp72 to 0N4R Tau (22), so we
wondered whether relative affinity for TAU1 or TAU2 might
partly explain this difference. Using the FAM–HLA tracer, we
measured the relative affinity of 0N4R Tau and the peptides for
wt Hsp72 and the equivalent Hsp72 BETA construct (residues
395–508). We found that most of the peptides, except for the
C-peptide of insulin, bind equivalently or weaker to Hsp72 than
Hsc70 (Fig. S3 and Table S1). This was especially prominent for

TAU1, which bound �10-fold less well to Hsp72 BETA than
Hsc70 BETA.

As a next step, we investigated whether the aforementioned
dynamical changes in the SBD also occur upon binding of
TAU1 to full-length Hsc70. However, the 70 kDa full-length
Hsc70 does not give rise to good NMR spectra, because of dom-
inance of the resonances of the unstructured tail (38), so we
used a construct that includes NBD, BETA, and LID, without
the TAIL. This construct was enabled for substrate binding by
including a mutation (L543Y) as suggested by the Lab of Dr.

Figure 3. Methyl region of the 13C-1H HSQC spectrum of BETA (MSNA395D-G508G3H6). A, blue, 11 �M BETA; red, with 11 �M TAU1, GKVQIINKKG. B, blue, 35
�M BETA; red, with TAU1, 300 �M GKVQIINKKG. C, blue, 11 �M BETA; red, with 19 �M WT 4R0N TAU. D, blue, 11 �M BETA; red, with 12 �M TAU2, VQIVYK. The
conditions were as follows: 25 mM Tris, pH 7.20, 50 mM NaCl, 1 mM EDTA, 2 mM DTT, 0.02% azide, 5% D2O, with SIGMAFAST proteinase inhibitors.
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Gierasch (39). This mutation, in context of DnaK or Hsp72
(HSPA1A), restores the peptide-binding affinity that is lost
upon removal of the TAIL. Satisfyingly, we found that TAU1
peptide binding causes the appearance of resonances in the
TROSY HSQC NMR spectrum of Hsc70(1– 604) (Fig. 6, red
spots) and that the majority of those occur at the same positions
as they do in the isolated BETA domain (black circles).

To explore where the interaction of TAU1 takes place, we
carried out de novo resonance assignments for the backbone
and most methyl-bearing side chains of BETA complexed to
TAU1 and plotted the TAU1-induced NMR spectral changes
on the NMR structure available for BETA domain (40). From
this analysis, many of the broadened resonances are found in
and around the canonical binding cleft (Fig. 7). However, the
extent of the spectral perturbation is too large to confidently
map the binding of TAU1 to the cleft itself.

Subsequently, we compared the binding of peptide of TAU1
to BETA with the binding of NRLLLTG (NR) to BETA. Com-
paring TAU1 and NR binding is interesting because crystal and
solution structures are available for NR bound to DnaK SBD
(15, 16) and human Hsp70 (HSPA1A) SBD (41), showing the
peptide to be deeply inserted into the hydrophobic cleft. Fig. 8A
shows that NR, just like TAU1, causes the appearance of many
resonances, so it is reasonable to assume that both NR and
TAU1 bind into the same cleft. However, as the overlay shows
(Fig. 8B), the spectra of NR- and TAU1-bound BETA are not
identical, especially for the peaks that appear upon binding,
indicating structural differences between the complexes at the
binding sites.

Thus, we cannot rely on the HSPA1A and DnaK structures
with NR for the details of the binding of TAU1 to Hsc70. We
thus wondered what the details of the TAU1 binding are, such

Table 1
Binding of substrates to Hsc70 and its truncations by fluorescence polarization
TAU1, GKVQIINKKG; insulin C-peptide (C-peptide); TAU2, VQIVYK; huntingtin, MATLEKLMKAFESLKSF. The Fam-HLA tracer was at 20 nM, wt-Hsc70 at 5 �M,
NBD-BETA and BETA both at 1 �M. The inhibitory constant KI1 was computed from numerical integration of kinetic equations (see “Experimental procedures”); KI2 was
computed from Equation 3 in Ref. 54.

Wild type NBD-BETA (1–508) BETA (395–508)
EC50 KI1 KI2 EC50 KI1 KI2 EC50 KI1 KI2

�M �M �M

4R0N TAU 1.1 � 0.4 �1.0 4.2 0.5 � 0.3 0.2 0.75 0.8 � 0.3 0.2 0.75
TAU1 6.3 � 2.0 �1.0 5.9 2.6 � 1.5 0.3 1.3 3.1 � 1.6 0.5 1.6
NRLLLTG 15 � 11 4.0 14 9.4 � 3.9 2.0 4.7 15 � 4.7 2.0 7.8
C-peptide 4.4 � 5.4 �1.0 4.1 0.8 � 0.4 �0.1 0.4 1.0 � 0.2 �0.1 0.5
TAU2 �200 �50 �50
huntingtin �200 �50 �50
KFERQ �200 �200 �200

Figure 4. Functional assays reveal that Hsc70(1–508) (NBD–BETA) behaves similarly to wt-Hsc70. A, HLA tracer binding in the ADP and ATP states, as
measured by fluorescence polarization. Dark blue, NBD–BETA ADP; light blue, NBD–BETA ATP; black, wt-Hsc70 ADP; gray, wt-Hsc70 ATP. Note that the wt-Hsc70
curves could not reach saturation because of limitations on protein solubility. B, DJA2 stimulation of ATP turnover, as measured by malachite green assays. Blue,
NBD–BETA; black, wt-Hsc70. C, refolding of denatured luciferase. Blue, NBD–BETA; black, wt-Hsc70; gray, no Hsc70 control. Note that DJA2 will first stimulate and
then inhibit ATP turnover, showing a maximal stoichiometry. D, the ATPase activity of neither wt-Hsc70 nor NBD–BETA can be stimulated by peptide substrates.
Red, DnaK by NR; black, wt-Hsc70 by TAU1; blue, NBD–BETA by TAU1.
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as which residues of TAU1 are buried into the pocket and what
the direction of binding is. To address this question, we set out
to identify NOEs between assigned resonances of TAU1 and
resonances of BETA. However, to obtain reliable assignments
and NOEs for TAU1 resonances, one needs 13C,15N-labeled
TAU. Hence we decided to design and assign a construct that
contains the TAU1 sequence in cis: (Hsc70 (385–533)-
QPGGGKVQIINKKLD). Fig. S4 shows that virtually all cross-
peaks of the 1H-15N NMR spectrum of the 113-residue BETA
domain bound to TAU1 in trans overlay with a subset of the
cross-peaks of the 153-residue BETA–LID–cis–TAU1 con-
struct, providing confidence that the two preparations yield the
same complex.

Short of carrying out a de novo NMR structure determina-
tion, we identified 153 nonsequential NOEs in a set of 3D
NOESY spectra (examples in Figs. S5 and S6) of the current
construct that are compatible with the structure of PDB entry
7HSC (Fig. S7). 11 additional NOEs define the interaction
between the TAU1 sequence and the core of the BETA domain

(see Fig. S7 and the listing under “Experimental procedures”).
We carried out a molecular dynamics structure refinement
based on a constrained structure of PDB entry 7HSC structure
with the TAU1 peptide positioned by the identified NOEs (see
“Experimental procedures” and Figs. 9, A and B). From this
analysis, we find that the second Ile of TAU1 is buried in the
pocket.

With the Hsc70 BETA construct in-hand, we also investi-
gated the binding of other peptides. Fig. S8 shows that the
peptide GAGSLQPLALEGSLQKR, derived from the insulin
C-peptide, interacts strongly with Hsc70. According to the
competition assay, the affinity is submicromolar, not only for
BETA but also for wt-Hsc70 and wt-HSPA1A (Table 1 and
Table S1). Conversely, the autophagy recognition peptide
KFERQ and a Huntingtin-derived peptide (MATLEKLMKAF-
ESLKSF) do not compete with tracer binding for wt-Hsc70 or
HSPA1A (Table 1 and Table S1 and Fig. S8). The significance of
these findings will be discussed below. More broadly, this work
thus also establishes the BETA construct as a useful tool for
studying the interaction of Hsc70 with its substrates or drug
candidates.

Discussion

In this study, we find structural evidence that TAU1
(KVQIINKK) binds to the substrate-binding cleft of Hsc70,
with the same N3C polarity as NRLLLTG in DnaK. The NOE
data provide evidence that the C�1H3 group of the second
TAU1 Ile residue is buried deeply in the binding pocket. This is
similar to the binding of the C�1H3 of the second leucine in
NRLLLTG in the case of DnaK but different from the binding of
NRLLLTG with Hsp72 (HSPA1A), where the C�1H3 of the third
leucine is inserted into the pocket (41). Although this discovery
may not be earth-shattering, it adds to our knowledge of
Hsc70 –substrate interactions in a number of ways.

First, the Hsc70 SBD-binding cleft shows unexpected
substrate specificity. For example, the TAU1 sequence binds
tightly (KD � 0.4 �M; Table 1), whereas the TAU2 sequence
(SVQIVYK) does not (EC50 � 50 �M). Furthermore, we found
that the consensus model peptide, NRLLLTG, does not bind
very tightly to Hsc70 BETA (KD � 2 �M; Table 1). Current
methods for predicting the substrates of Hsp70 are based on
peptide array data obtained with prokaryotic DnaK, so it may be
worth revisiting these ideas.

Second, we found that an Hsc70 construct lacking the LID
domain still has many of the activities of the wt protein in vitro,
including protein-refolding ability. Similar findings were made
for a LID-less DnaK construct (14). The BETA domain binds
the different peptides equally well as wt-Hsc70 and the NBD–
BETA construct in the ADP state (Table 1); hence the absence
of the LID does not cause the BETA domain to move to a lower-
affinity “ATP state.” Indeed, the LID-less NBD–SBD construct
can still have low or high affinity for substrate depending on the
nucleotide state of the NBD (Fig. 4A). Hence, the dramatic
difference in position of the LID in the structures of wt-
DnaK in ADP (17) and ATP (19) states does not seem to be a
hallmark of the allosteric state. So, what then is the function
of the LID? Slepenkov and Witt (36) have shown that the
DnaK LID decreases the kinetics of both substrate binding

Figure 5. Competition of various peptides with FAM–HLA for binding to
different Hsc70 constructs in the presence of 1 mM ADP. A, Hsc70 –BETA at
1 �M. B, Hsc70 NBD–BETA (1–508) at 1 �M. C, wt-Hsc70 at 5 �M. Red, insulin
C-peptide; purple, TAU1; blue, NRLLLTG; orange, TAU2; green, huntingtin;
black, KFERQ; dark blue, 4R0N TAU. Also see Table 1.
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and release by at least 1 order of magnitude. Others have
found that the DnaK tail may aid in recruiting it to substrate
(42). For Hsc70, the LID extended tail contains the C-termi-
nal EEVD motif, which is critical for binding to CHIP (29). In
addition, recent NMR and mutagenesis studies indicate that
the Hsc70 LID binds to phosphoserine lipids in the lysosome
and endosome outer envelopes, processes that are important
in CMA (43). Thus, the LID seems to play more important
roles in protein–protein and protein–lipid interactions than
in substrate binding.

Third, we find that many NMR resonances of the binding
loops around the substrate cleft of the Hsc70 BETA domain are
absent in the apo state, likely because of dynamical disorder on
the NMR chemical shift time scale (milli/microseconds). It
seems likely that these motions allow the cleft to structurally
adept itself different hydrophobic sequences. This finding
appears to be corroborated in other systems. For example,
dynamical disorder was also detected in the isolated apo-BETA
domain of DnaK E. coli by NMR (14). In the crystal structures of
DnaK in the ATP state, in which the LID is disengaged from the
SBD and in which no substrate is present, the crystallographic
B-factors in the binding loops (40 – 60 Å2) are significantly
higher than for other regions of the protein (�20 Å2). However,
from those studies, one cannot distinguish whether the absence
of a docked LID or the absence of a bound substrate causes the
disorder. Here, we show that the dynamic disorder is due to the
lack of substrate, because it is quenched upon substrate binding
even without LID present. The amount of disorder (i.e. the
number of missing resonances) is more substantial in Hsc70
than in DnaK BETA (14) and but the extent of the disorder is
smaller in Hsc than in DnaK. For example, the NH NMR cross-
peaks of DnaK residues Thr417 and Ile418, more than 20 Å
removed from the substrate binding cleft, are broadened in the
apo state of DnaK, whereas they are present in the Hsc70 apo
state. In DnaK, these resonances reappear when the peptide NR

is bound. As was then hypothesized (14, 44), these DnaK resi-
dues may be part of the interface to the NBD and may alloster-
ically communicate the cleft’s status to the NBD. Indeed, the
crystal structures of DnaK in the ATP state (18, 19) show Thr417

and Ile418 at the center of the SBD–NBD interface, lending
much credence to these earlier conjectures. The allosteric
mechanism connecting cleft and interface to the NBD in DnaK
has been further explored by the Gierasch lab, showing sub-
strate-induced conformational changes forming a “path” from
SBD cleft to NBD interface (45). However, according to the
current structural/dynamical data on Hsc70 BETA domain,
there is no clear conformational/dynamic path from the cleft
area to the presumed interface with the NBD (at the right-hand
side in Fig. 7). The NH resonances of the corresponding resi-
dues Thr419 and Ile420 are visible in the apo NMR data, although
Ile420 is weak, and becomes somewhat stronger when TAU1 is
bound. This behavior is interesting in the context of a surpris-
ing asymmetry in the allostery of wt Hsc70. Specifically, we
found that substrate binding to Hsc70 has little effect on
ATP hydrolysis (Fig. 4D), whereas the effect is large for
DnaK. Thus, whereas NBD3 SBD allosterics are fully func-
tional in Hsc70 (Fig. 4A), there seems to be little SBD3NBD
communication. Of course, the basic thermodynamic cycle
should still exist; because Hsc70 with ADP binds TAU1
tighter than Hsc70 with ATP, TAU1 must drive the NBD
toward the ADP conformation by a mechanism that remains
unclear. Moreover, it remains unclear why the human sys-
tem has lost substrate-induced activation of ATP hydrolysis,
but the current BETA construct might be one structural tool
for studying this question.

Fourth, the Hsc70 BETA construct allowed us to study a
variety of substrate interactions. Hsc70 also plays a key role in
CMA and recognizes its autophagy clients through their
exposed KFERQ sequences (46). This sequence does not con-
form to the typical hydrophobic sequence that one expects for a

Figure 6. 15N-1H TROSY HSQC spectra of near wt Hsc70(1– 604). Blue, 45 �M Hsc70(1– 604) L542Y in the ADP state. Red, 45 �M Hsc70(1– 604) L542Y in the
ADP state �50 �M TAU1 (GKVQIINKKG). Black, 45 �M BETA � 200 �M TAU1 (GKVQIINKKG).
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cleft-binding peptide, such as TAU1 or NR. Therefore, we were
not surprised to find that the KFERQ peptide does not bind to
the canonical substrate binding cleft (Table 1 and Fig. S8). We
were also interested in the binding of the Huntingtin-derived
peptide (MATLEKLMKAFESLKSF). Hsc70 is known to bind
directly to Huntingtin and to suppress Huntington’s pheno-
types in many animal models. It has been suggested that the
mentioned sequence, which flanks the poly-Q tract, constitutes
an Hsc70-binding site (47). Our results (Table 1 and Fig. S8)
show that it does not bind to the Hsc70 substrate binding cleft,
suggesting either that the flank region is not involved or that
another noncanonical interaction with Hsc70 is responsible.
Lastly, we found that the insulin C-peptide, GAGSLQPLALEG-
SLQKR, binds tightly (KD � 100 nM; Table 1) to the Hsc70

BETA cleft (Table 1 and Fig. S8). We expect that the ER Hsp70
chaperone Bip also binds to this peptide where such interaction
would have functional significance.

Experimental procedures

Protein expression and purification

A Pet21 plasmid coding for Hsc70 BETA (residues
SNA395D–G508GGGHHHHHH) was purchased from Vector-
Builder (Cyagen). It was transfected into and expressed in
E. coli BL21 cells in M9 medium containing 1 g/liter 15NH4Cl
and 2 g/liter glucose 13C6 (Cambridge Isotopes Laboratories).
The homogenized cell contents were loaded on nickel–
nitrilotriacetic acid (Qiagen) and extensively washed with Tris

Figure 7. The TAU1-induced NMR spectral changes plotted on the Hsc70 BETA domain (PDB entry 7HSC). Red, amides and methyls for which the BETA
apo NMR signal intensity is � 50% of that of BETA with TAU1. Blue, resonances that were less perturbed. Gray, no information.
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buffer. When the wash eluate was clear, the bound BETA
domain was unfolded/refolded from 4 M guanidine HCl while
on the column to remove bound peptides/proteins. After elu-
tion with imidazole, the protein was exchanged into 100 mM

(NH4)2CO3 (buffered at pH 7 with 1 mM Tris) and lyophilized,
because it was in our hands not possible to concentrate the
construct beyond 20 �M using ultra-filtration. The freeze-dried
material was resuspended into 1 ml of H2O to yield a 200 �M

sample (by Bradford and NMR).
The Pet21 plasmid coding for Hsc70 BETA-TAU CIS con-

struct, MSNA395D–Q533 534QPGGGKVQIINKKLDGGGHH-
HHHH, was also purchased from VectorBuilder. The protein
was expressed in E. coli BL21 cells in M9 medium containing 1
g/liter 15NH4Cl and 2 g/liter Glucose 13C6. The protein was
purified over nickel–nitrilotriacetic acid without refolding and
concentrated using Centricon (Millipore) ultrafiltration. The
sample was dialyzed into 25 mM Tris, 25 mM KCl, 1 mM EDTA,
1 mM DTT, 0.02% NaN3 in 90% H2O/D2O, pH 7.2. The peptides
mentioned in this work were purchased from Peptide 2.0
(Chantilly, VA).

NMR experimentation

NMR backbone assignments were independently deter-
mined for BETA (with unlabeled KVQIINKK bound) and
BETA–cis–TAU, from HNCO, HNCACO, HNCA, HNCOCA,
HNCACB, and HNCOCACB TROSY experiments on Bruker
Avance2 spectrometers operating at 16 and 14 Tesla, respec-
tively. The semiautomatic assignment program EZ-ASSIG 4.1
was used for both (48). Additional assignments were made from
intraresidue and sequential NOEs identified in (1H-TM-15N-
1H) 3D NOESY-TROSY spectra. The methyl groups were
assigned for BETA using 3D H(C)CH COSY, 3D (H)CCH
COSY, and TOCSY spectra. The assignments were transferred
to the methyl spectrum of BETA–cis–TAU. The additional
methyls in BETA–cis–TAU were assigned from intraresidue

and sequential NOEs with the backbone NH using 3D 1H-TM-
13C-1H and 13C-TM-13C-1H NOESY HSQC-Watergate spectra.
Most NMR experiments were obtained using nonuniform-
sampling schemes with 15% point density, using the Hyberts–
Wagner protocols (49). The backbone (HN, N, CA, CB, and
CO) assignments are virtually contiguous and 85% complete
except for the region Lys531–Gly537, for which no single reso-
nance could be identified, and for the N- and C-terminal clon-
ing artifacts. The methyl group assignments (Ala, Thr, Met, Ile,
Leu, and Val) are 80% complete (see Fig. S6). The assignments
are deposited at the Biological Magnetic Resonance Bank
(accession no. 27395).

The bulk of the NOEs for the structure verification/determi-
nation were assigned by hand in Sparky displays (50) from
1H-TM-15N-1H 3D NOESY-TROSY (Fig. S5) and 13C-TM-
15N-1H 3D HMQC-NOESY-TROSY spectra (Fig. S6), together
with the 3D 1H-TM-13C-1H NOESY-HSQC and 13C-TM-
13C-1H HMQC-NOESY-HSQC-Watergate spectra. The obtained
NOEs were compared with NOEs computed from the NMR
structure for the self-bound Hsc70 SBD (385–543) (PDB entry
7HSC) and from the crystal structure of Hsp70 SBD with
NRLLLTG bound (PDB entry 4PO2). The NOE computation
was a complete relaxation matrix numerical integration based
on cross-relaxation rates obtained from distances in the struc-
ture using formal relaxation equations assuming no local
dynamics and an experimentally determined rotational corre-
lation time (9 ns) (51).

Modeling

The “molecular replacement” structure for BETA–cis–TAU
presented here was obtained starting from the Hsc70 SBD
(385–543) coordinates (PDB entry 7HSC) (20), omitting resi-
dues 534 –543 and replacing them with QPGGGKVQIINKKLD
in extended conformation pointing away from the protein core.
This conformation was minimized using AMBER 16 (52), using

Figure 8. Comparing the 15N-1H TROSY-HSQC spectra of BETA with NRLLLTG and with GKVQIINKKG. A, 35 �M BETA in blue superposed on 35 �M BETA �
200 �M NRLLLTG (green). B, 35 �M BETA � 200 �M NRLLLTG (green) superposed on 35 �M BETA � 200 �M GKVQIINKKG (red).
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the generalized Born-solvent replacement method with all
CA restrained to their current positions (53). The sequence
QPGGGKVQIINKKLD was pulled into the substrate-binding
cleft during a 50-ps molecular dynamics run by the NOEs:
T429HN-I541HN, T429HN-I542HN, T429HN-I542MD, T429HN-

I541HA, T430HN-I541HA, T430HN-I542MD, I541HN-T429MG,
I542HN-T429MG, I542HN-I541MD, V438MG-I542MD, and
I440MD-I542MD, whereas residues 395–508 remained re-
strained to their CA positions. The conformation was equili-
brated, cooled down, and minimized.

Figure 9. A, molecular replacement structure for Hsc70 BETA domain with the TAU peptide bound. Color coding is as in Fig. 6. The sequence GKVQIINKKG is
shown in yellow. The sphere is the CD methyl group of the second Ile of the in cis sequence GKVQIINKKG. B, details of the molecular replacement structure for
Hsc70 BETA domain with the in cis TAU1 sequence bound. On Hsc70, hydrophobic residues are in green, amphipathic residues (Thr, Tyr) in peat green, positive
residues in blue, negative residues in red, and polar residues in gray. Residues VII of the in cis sequence GKVQIINKKG are labeled as Val539, Ile541, and Ile542

(magenta). Other residues of TAU1 are in yellow.
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Fluorescence polarization assay

Experiments were performed as described previously (11).
Solutions of Hsc70 were prepared at the concentrations speci-
fied with saturating amounts of ATP or ADP (1 mM final) in
fluorescence polarization assay buffer (100 mM Tris, 20 mM

KCl, 6 mM MgCl2, 0.01% Triton X-100, pH 7.4). The solutions
were added at a total volume of 16 �l to the wells of a low-
volume, black, 384-well, round-bottom plate (catalog no. 4511,
Corning). Then 4 �l of the fluorescent peptide probe 5Fam-
RENLRIALRY (Fam-HLA) was added to a final concentration
of 20 nM, and the plate was allowed to incubate, in the dark, at
room temperature for 1 h. At the end of the incubation period,
fluorescence polarization was read at an excitation wavelength
of 485 nm and an emission wavelength of 530 nm in a Molecular
Devices Spectramax M5 plate reader. The results were fit to a
1:1 variable slope model in GraphPad PRISM 7.0.

Converting EC50 to KI

We solved the kinetic equations for the scheme

T � P-|0
kTf

kTb
PT

I � P-|0
kIf

kIb
PI

SCHEME 1

by numerical integration. T is the tracer, and I is the inhibitor.
For NBD–BETA and BETA, the following parameters were
used: KT � kTf/kTb � 200 nM (see Fig. 4A), whereas KI � kIf/kIb
was varied from 10 nM to 50 �M for different calculations. Both
forward rates were arbitrarily set to 106 M	1 s	1. The integra-
tion starting conditions were: [P](t � 0) � 1 �M, [T](t � 0) � 20
nM, [PT](t � 0) � 0, [PI](t � 0) � 0, with [I](t � 0) varying from 0 to
200 �M. The total integration time was set to 3/slowest kinetic
rate, allowing the equilibrium concentrations of all five reaction
species to be obtained. For wt-Hsc70, the following parameters
were used: KT � 3 �M (see Fig. 4A) and [P](t � 0) � 5 �M. For
each run with different KI, the value of [I] for which [PT] was
reduced to 50% of its value without I was compared with the
experimental EC50 value.

ATP hydrolysis

A version of this assay was performed as previously described
(11). Briefly, solutions of Hsc70 and DJA2 were prepared in
malachite green buffer (100 mM Tris, 20 mM KCl, 6 mM MgCl2,
0.01% Triton X-100, pH 7.4) and added to the wells of a clear,
96-well plate. Hsc70 was held at a constant concentration of 1
�M, whereas DJA2 was prepared and added in a dilution series.
A solution of ATP was added to a final concentration of 1 mM in
a total assay volume of 25 �l/well. The plate was covered, briefly
centrifuged, and then allowed to incubate at 37 °C for 1 h. Dur-
ing incubation, the Malachite Green reagent was prepared, as a
2:2:1:1 mixture of water, malachite green (0.081% w/v), polyvi-
nyl alcohol (2.3% w/v), and ammonium heptamolybdate tetra-
hydrate (5.7% w/v in 6 M HCl). At the end of the incubation

period, 80 �l of malachite green reagent, followed by 10 �l of
saturated sodium citrate, was added to each well, and absor-
bance was read at 620 nm in a Molecular Devices Spectramax
M5 plate reader. A phosphate standard was added to the plate
to convert absorbance values to pmol ATP hydrolyzed/min.
The results were fit to a Michaelis–Menten with variable inter-
cept model in GraphPad PRISM 7.0.

Luciferase refolding

Experiments were performed as previously described, with
some modifications (11). Denatured luciferase was prepared by
incubating native firefly luciferase (Promega) with 8 M guani-
dine HCl for 1 h at room temperature. A solution of Hsc70 and
denatured luciferase (final concentrations, 1 �M and 100 nM,
respectively) was prepared in refolding buffer (23 mM HEPES,
120 mM KAc, 1.2 mM MgAc, 15 mM DTT, 61 mM creatine phos-
phate, 35 units/ml creatine kinase, 5 ng/�l BSA, pH 7.4) and
added to the wells of a white 96-well plate. DJA2 was also added
to the wells in a dilution series. A solution of ATP was added to
each well at a final concentration of 1 mM, in a total reaction
volume of 25 �l/well. The plate was covered, briefly centri-
fuged, and then allowed to incubate at 37 °C for 30 min.
Although the plate was incubating, the Steady-Glo reagent
(Promega) was prepared, as described previously (11), of which
25 �l was added to each well following the 1-h incubation, and
luminescence was read immediately in a Molecular Devices
Spectramax M5 plate reader. To improve clarity, the results
were fit to a spline.
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